T. 62, № 10

ФИЗИКА

2019

УДК 533.9.08

DOI: 10.17223/00213411/62/10/129

В.П. ДЕМКИН, С.В. МЕЛЬНИЧУК, А.В. ПОСТНИКОВ

2D-МОДЕЛЬ ПЛАЗМЫ ТЛЕЮЩЕГО РАЗРЯДА В ГЕЛИИ АТМОСФЕРНОГО ДАВЛЕНИЯ, ФОРМИРУЕМОЙ ПОСЛЕ ИСКРОВОГО ПРОБОЯ: РАСЧЕТ ЭЛЕКТРОФИЗИЧЕСКИХ И ТЕРМОДИНАМИЧЕСКИХ ХАРАКТЕРИСТИК ^{*}

Методом конечных элементов проведен расчет динамики электрофизических и термодинамических характеристик плазмы гелия атмосферного давления после искрового пробоя 1 мм газоразрядного промежутка. При вычислениях использовалась 2d-аксиально-симметричная модель плазмы в дрейф-диффузионном приближении в сочетании с уравнениями Навье – Стокса и теплопроводности. Выбранные параметры электрической цепи, начальные и граничные условия разряда приводят к формированию локализованного в конечном объеме стационарного самостоятельного разряда постоянного тока ~ 0.1 А с температурой ~ 500 К. Проведен сравнительный анализ влияния разогрева плазмы на динамику ее электрофизических характеристик и вид разряда.

Ключевые слова: плазма атмосферного давления, тлеющий разряд, численное моделирование плазмы, самосогласованная столкновительная модель, биомедицинские приложения.

Введение

Разработка газоразрядных источников низкотемпературной неравновесной плазмы (ННП) для биомедицинских приложений является одним из актуальных направлений развития плазменной медицины [1]. Основанием для этого служат достижения и успехи в применении плазмы и плазменных технологий в клинической практике в области онкологии, дерматологии, стоматологии, фармакологии, лечении внутренних болезней [2–8]. Газоразрядная плазма обладает антимикробным свойством и применяется для стерилизации медицинского оборудования и инструментов, лечения ран и остановки кровотечения, регенерации биологических тканей [9].

Область практического применения ННП в медицине зависит от температуры газа: плазма с температурой газа 100–150 °C используется для стерилизации и обеззараживания медицинской аппаратуры, плазма с температурой газа 60–100 °C применяется для ускорения свертывания крови и абляции биотканей, а также стерилизации чувствительных к температуре предметов, и, наконец, плазма с температурой газа 20–60 °C наиболее распространена в медицине для проведения *in vivo* и *in vitro* экспериментов и обработки живых тканей и клеток без их термического или электрического разрушения [10].

Разработанные устройства для получения низкотемпературной неравновесной плазмы можно условно разделить на три типа: 1) источники первичной плазмы (direct plasma sources), в которых биологический объект-мишень используется как один из электродов; 2) источники вторичной плазмы (indirect plasma sources), в которых плазма создается в самом источнике, а затем транспортируется на обрабатываемую поверхность посредством газа-носителя или за счет диффузии; 3) так называемые гибридные источники плазмы (hybrid plasma sources), в которых плазма создается посредством множества нано- и микроразрядов на сетчатом проводящем электроде [9].

Более универсальными источниками ННП являются источники второго типа, где обрабатываемую мишень можно отделить от самого источника, что очень важно, когда мишень находится в труднодоступном месте. Кроме того, размер и форму плазменной струи от таких источников можно масштабировать в широких пределах. Также следует учесть, что распространение плазменной струи в окружающем газе приводит к изменению состава доставляемой к мишени плазмы [11, 12].

Наиболее распространенными источниками плазмы в биомедицинских приложениях являются приборы, разработанные на основе неравновесной газоразрядной плазмы, получаемой в дуговых, искровых и ВЧ-плазмотронах, а также в разрядах с диэлектрическим барьером при атмосферном давлении [13]. Основными механизмами воздействия плазмы на живые объекты являются взаимодействия активных частиц, генерируемых в разряде и при взаимодействии плазмы с несущим газом: электронов, ионов, реактивных кислород- и азотсодержащих соединений (ROS) и

^{*} Работа выполнена в рамках Tomsk State University Competitiveness Improvement Program.

(RNS) – и коротковолнового излучения, которые могут оказывать прямое воздействие на биологические объекты, а также являются катализаторами химических процессов и дальнейшей последовательности биохимических реакций в живых биологических тканях и клетках, ускоряющих терапевтические эффекты [14, 15]. Для повышения продуктивности генерации биологически активных частиц и увеличения средней энергии электронной компоненты наиболее эффективным в качестве несущего газа является гелий [12].

Образование биологически активных частиц, их концентрация и пространственное распределение, а следовательно, и их взаимодействие с живыми тканевыми и клеточными структурами зависят от метода генерации плазмы, способов ее доставки к биологическим поверхностям и доз их обработки плазмой. Одним из перспективных источников низкотемпературной неравновесной плазмы является нестационарный слаботочный плазмотрон, в котором плазма образуется в результате случайной последовательности искровых пробоев, переходящих в режимы тлеющих разрядов [16, 17]. Использование источников плазмы, основанных на плазме тлеющего разряда, поддерживаемой искровым разрядом, дает возможность получать плазменные струи с более высокими концентрациями заряженных частиц и повышенной интенсивностью коротковолнового спектра излучения и является более перспективным в применении их для биомедицинских целей [14, 18]. Но биологическое действие плазмы в каждом случае требует установления контролируемых условий и режима горения разряда и состава несущего газа, обеспечивающих терапевтический эффект плазмы и минимизацию рисков влияния вредных для здоровья факторов. Поэтому для практического применения источников, основанных на такого рода плазме, необходимо понимание физических механизмов переноса энергии при переходе от тлеющего к искровому разряду и построение детализированной математической модели этих процессов.

В работе [19] с использованием 2d-аксиально-симметричной модели проведено моделирование пространственно-временной динамики низкотемпературной плазмы тлеющего разряда в гелии атмосферного давления после искрового пробоя и исследование зависимости разряда от начальных условий и параметров внешней электрической цепи. Показано, что при определенном задании начальных параметров электрической цепи и концентрации электронов разряд переходит в стационарный режим, что согласуется с результатами эксперимента [17, 18].

Целью данной работы является построение модели нестационарной плазмы комбинированного разряда, основанного на переходе тлеющего разряда в искровой и проведение численного эксперимента по изучению динамики электрофизических и термодинамических характеристик плазмы гелия атмосферного давления в тлеющем разряде после искрового пробоя.

Численная модель и геометрия разряда

В основу численного расчета электрофизических и термодинамических характеристик плазмы положена физико-математическая модель, использованная в работе [19] и дополненная уравнениями Навье – Стокса и теплопроводности.

Пространственно-временная динамика концентрации электронов *n_e* вычислялась из уравнения непрерывности

$$\frac{\partial n_e}{\partial t} + (\nabla \cdot \Gamma_e) = R_e - (\boldsymbol{u} \cdot \nabla) n_e,$$

$$R_e = \sum_{j}^{P} x_j k_j N_n n_e.$$
(1)

Здесь R_e – суммарная константа скорости плазмохимических реакций с участием электронов; Γ_e – вектор потока электронов; u – вектор скорости нейтральных частиц; x_j – молярная доля частиц для *j*-компоненты плазмы; k_j – константа скорости *j* реакции; N_n – концентрация нейтральных частиц; P – число реакций, приводящих к изменению электронной плотности. Для вычисления Γ_e использовалось дрейф-диффузионное приближение

$$\Gamma_e = -\mu_e n_e E - D_e \nabla n_e \,, \tag{2}$$

где μ_e – подвижность электронов; E – вектор напряженности электрического поля; D_e – коэффициент диффузии электронов.

Объемная плотность энергии электронов n_{ε} определялась из уравнения непрерывности в дрейф-диффузионном приближении для вектора потока энергии электронов Γ_{ε} :

$$\frac{\partial n_{\varepsilon}}{\partial t} + (\nabla \cdot \Gamma_{\varepsilon}) + (\boldsymbol{E} \cdot \Gamma_{e}) = R_{\varepsilon} - (\boldsymbol{u} \cdot \nabla) n_{\varepsilon},$$

$$\Gamma_{\varepsilon} = -\mu_{\varepsilon} n_{\varepsilon} \boldsymbol{E} - D_{\varepsilon} \nabla n_{\varepsilon},$$

$$R_{\varepsilon} = \sum_{j}^{P'} x_{j} k_{j} N_{n} n_{e} \Delta \varepsilon_{j},$$
(3)

где R_{ε} – потери энергии за счет неупругих столкновений; μ_{ε} – подвижность энергии электронов; E – вектор напряженности электрического поля; D_{ε} – коэффициент диффузии энергии электронов; $\Delta \varepsilon_{j}$ – потери энергии электронов в *j* реакции; P' – число реакций, приводящих к изменению энергии электронов.

Уравнение непрерывности для тяжелых частиц имеет вид

$$\frac{\partial n_k}{\partial t} + (\nabla \cdot \boldsymbol{\Gamma}_k) = R_k - (\boldsymbol{u} \cdot \nabla) n_k, \qquad (4)$$
$$\boldsymbol{\Gamma}_k = \pm \mu_k n_k \boldsymbol{E} - D_k \nabla n_k.$$

Здесь n_k – концентрации нейтральных и заряженных частиц газа; Γ_k – вектор потока в дрейфдиффузионном приближении; R_k – константа скорости реакций с участием тяжелых частиц; μ_k – подвижность ионов; D_k – коэффициент диффузии.

Скорость электрически нейтральных частиц и давление в плазме рассчитывались с помощью уравнения Навье – Стокса и уравнения неразрывности для сжимаемой среды:

$$\rho \frac{\partial \boldsymbol{u}}{\partial t} + \rho(\boldsymbol{u} \cdot \boldsymbol{\nabla}) \quad \boldsymbol{u} = \boldsymbol{\nabla} [-pI + \tau] + \boldsymbol{f},$$

$$\frac{\partial \rho}{\partial t} - (\boldsymbol{\nabla} (\rho \ \boldsymbol{u})) = 0, \quad \rho = \frac{PM}{RT}, \quad \frac{1}{M} = \sum_{i=1}^{q} \frac{\omega_{i}}{M_{i}},$$

$$\tau = 2\mu S - \frac{2}{3}\mu (\boldsymbol{\nabla} \cdot \boldsymbol{u})I, \quad S = \frac{1}{2} (\boldsymbol{\nabla} \boldsymbol{u} + (\boldsymbol{\nabla} \boldsymbol{u})^{T}),$$
(5)

где ρ – плотность плазмы; P – абсолютное давление; M – молярная масса; M_i – молярная масса *i*-компоненты газовой смеси; R – универсальная газовая постоянная; T – температура плазмы; ω_i – массовая доля *i*-компоненты газовой смеси; u – скорость нейтральных частиц плазмы (u = 0 в начальный момент времени); I – единичная матрица; S – тензор скорости деформации (T – индекс транспонирования); τ – тензор вязких напряжений; f – векторное поле массовых сил, в этой модели f = 0.

Температура Т плазмы рассчитывалась с помощью уравнения теплопроводности

ρ

$$C_{p} \frac{\partial T}{\partial t} + \rho \ C_{p} \boldsymbol{u} \cdot \nabla T = \nabla (\chi \nabla T) + Q,$$

$$Q = \boldsymbol{E} \cdot \sum_{i} \boldsymbol{j}_{i} + B (\boldsymbol{E} \cdot \boldsymbol{j}_{e}),$$

$$B = \frac{r_{el} \Delta \varepsilon_{el}}{r_{el} \Delta \varepsilon_{el} + \sum_{i=1}^{G} r_{i} \Delta \varepsilon_{i}},$$
(6)

где C_p – теплоемкость при постоянном давлении; χ – теплопроводность; Q – источник тепла; j_i – плотность тока тяжелых заряженных частиц; j_e – плотность тока электронной компоненты плазмы; B – коэффициент, учитывающий, что не все столкновения электронов с атомами плазмы приводят к передаче тепла; $r_{\rm el}$ – константа скорости упругих столкновений электронов с He; $\Delta \varepsilon_{\rm el}$ – средняя энергия, теряемая электронами при упругих столкновениях с He; r_i – константа скорости неупругих столкновений; $\Delta \varepsilon_i$ – энергия, теряемая электронами при неупругих столкновениях с He. Величина B рассчитывалась как отношение средней энергии, теряемой электронами при упругом ударе, к средней энергии, теряемой электронами при упругих и неупругих столкновениях. В этой модели предполагается, что вся энергия, теряемая электронами при неупругих столкновениях. В этой модели предполагается, что вся энергия, теряемая электронами при неупругом ударе, полностью переводится в энергию излучения. Разогрев плазмы за счет столкновений атомов в основном со-

стоянии с атомами в метастабильном состоянии не рассматривался из-за значительного увеличения объема вычислений.

Распределение электрического поля и потенциала U в объеме разряда рассчитывали по формулам

$$\nabla \cdot \boldsymbol{D} = \rho_q,$$

$$\boldsymbol{E} = -\nabla U,$$
(7)

где ρ_q – общая плотность заряда.

Система уравнений (1) - (7) взаимосвязана общими переменными. На следующем шаге по времени, на основании (7), электрическое поле рассчитывается в объеме разряда. Затем это электрическое поле используется уравнениями плазмы (1) - (4) для расчета концентраций и динамических характеристик компонентов плазмы, из которых с использованием текущей температуры рассчитываются давления в плазме, массовые и мольные доли его компонентов. Рассчитанные плотность плазмы и динамическая вязкость среды переносятся из плазменного модуля (1) - (4) в уравнение потока жидкости (5), а также плотность, теплопроводность, теплоемкость и из (5) ско-

рости нейтральных частиц в плазме переводятся в уравнение теплопроводности (6). Новое давление, поле скоростей нейтральных частиц и температура рассчитываются по уравнениям (5) и (6), которые на следующем шаге по времени используются уравнениями плазмы (1) – (4). Система уравнений (1) – (7) была решена в едином масштабе времени. Основные соотношения уравнений (1) – (7) показаны на рис. 1.

Рис. 1. Схема взаимосвязей уравнений (1) – (7) п

Конфигурация электрической цепи приведена на рис. 2, *а*. Напряжение $U_0 = 1500$ В от источника питания подавалось через сопротивление R = 50 (или 100) кОм на плоские электроды в виде диска. Диаметр электродов b = 6 мм, расстояние между ними a = 1 мм. На этом рисунке

также показано начальное распределение концентрации заряженных частиц, которое соответствует электрически нейтральному цилиндрическому слою в прикатодной области диаметром d = 0.2 мм и высотой h = 0.08 мм с концентрацией заряженных частиц $n_e = n_i = 5 \cdot 10^{19}$ м⁻³ [19].

Электрическое поле в плазме разряда рассчитывалось по данным об электронной и ионной плотности с учетом граничных условий, задаваемых конфигурацией электрической цепи разряда.

Система уравнений (1) - (7), описывающая динамику плазмы, решалась численно методом конечных элементов, сетка которого представлена на рис. 2, б. В области прикатодного падения потенциала линейный размер элементов вдоль оси z выбран S1 = 0.002 мм, что на порядок меньше длины свободного пробега электронов в процессе ионизации. В области положительного столба разряда и остальных второстепенных частях рассчитываемого объема плазмы величина линейных размеров элементов выбрана S2 = 0.004 мм и S3 = 0.018 мм соответственно. В области прикатодного падения потенциала из-за его расширения с течением времени в радиальном направлении величина элементов S1 в этом направлении не меняется.

Рис. 2. Электрическая схема и геометрия разряда (*a*). Сетка метода конечных элементов: S1 – область прикатодного падения потенциала, S2 – область положительного столба разряда, S3 – второстепенная область разряда (δ)

Столкновительная схема плазмы, используемая при решении уравнений непрерывности, включает в себя реакции, используемые ранее в работе [19]. В эту схему включены следующие реакции: упругий удар электронов с атомами газа, интегральное возбуждение с пороговым значением энергии $\Delta \varepsilon = 20$ эВ и ионизацию с $\Delta \varepsilon = 25$ эВ. Расчет кинетики процессов проводился на основании вида их сечений и распределения электронов по энергиям *f*(ε). Рекомбинации заряженных частиц и образование молекулярного иона He₂⁺ рассчитывались исходя из вида температурной зависимости констант скорости реакций этих процессов [20].

Расчет транспортных характеристик электронной компоненты плазмы проводился на основании данных о зависимости подвижности $\mu_e(\overline{\epsilon})$ электронов от их средней энергии $\overline{\epsilon}$, полученной при численном решении уравнения Больцмана для различных однородных электрических полей [19, 21].

Начальные условия разряда выбраны, исходя из предположения, что после искрового пробоя сформирован объемный заряд, представленный на рис. 2, *a*. Напряжение на электродах в начальный момент времени составляло U_0 , электрическое поле между катодом и анодом однородно, величина которого $E = U_0/a = 1.5 \cdot 10^4$ В/см. Давление и температура рассматриваемого объема газа в начальный момент времени равны P = 760 Торр и T = 300 К соответственно.

На границах области плазмы полагалось, что нормальная к оси разряда составляющая потоков заряженных и нейтральных частиц обращается в нуль. Коэффициент вторичной эмиссии электронов с катода под действием ионов был принят равным $\gamma = 0.4$. Начальная энергия первичных и вторичных электронов, полагалась равной 4 и 1 эВ соответственно. Температура катода и анода считалась постоянной на всем интервале времени расчётов и равнялась 300 К. Расчеты проводились с использованием Comsol Multiphysics 4.2.

Результаты численных расчетов и их обсуждение

На рис. 3 представлены рассчитанные зависимости тока I и напряжения U от времени для R = 50 и 100 кОм. При отсутствии электрической емкости, параллельной межэлектродному промежутку, кривые тока и напряжения разряда совпадают по форме. С левой стороны на этих рисунках изображены оси напряжения U на электродах, с правой

стороны – оси токов I разряда.

Поведение тока разряда на интервале времени от 10^{-9} до 10^{-8} с обсуждалось в [19], где проводились аналогичные расчеты без учета термодинамических свойств плазмы. Указанная динамика связана с выбором начального распределения объемного заряда. Резкий рост электрического тока обусловлен приходом электронной лавины на анод, а дальнейший его спад – экранирующим действием положительных ионов возле катода. После этого монотонный рост электрического тока сопровождается расширением прикатодного слоя разряда. Сравнение кривой зависимости тока от времени, изображенной на рис. 3, δ , с аналогичной кривой (рис. 3, a, I_c) из работы [19], полученной без учета термодинамических свойств плазмы, показывает, что в первом случае ток достигает стационарного значения к моменту

времен 10^{-3} с, а во втором случае – к 10^{-5} с, что связано с процессом разогрева плазмы. По этой же причине в первом случае величина стационарного тока незначительно больше, чем во втором случае.

Как показал анализ полученных результатов, с учетом и без учета разогрева плазмы, пространственно-временная динамика и электрофизические параметры плазмы после искрового пробоя мало отличаются друг от друга. Эти характеристики достаточно подробно были рассмотрены в [14,19], в данной работе основное внимание уделяется описанию процесса разогрева плазмы и эффектов, связанных с ним.

На рис. 4 показано распределение тепловой мощности в единице объема вдоль оси *z* разряда, выделяемой токами электронной *Qe* и ионной *Qi* компонент плазмы для момента времени $t = 10^{-5}$ с и R = 50 кОм. Такое распределение выделяемой мощности является характерным для всех моментов рассматриваемого промежутка времени.

Из рис. 4 видно, что разогрев прикатодной области происходит за счет электрического тока ионов тяжелых частиц, а область положительного столба разогревается за счет электрического тока электронов, причем выделяемая мощность ионов в прикатодной области значительно выше, чем электронов в области положительного столба. Как следует из рис. 5, это приводит к тому, что прикатодная область за короткий промежуток времени разогревается значительно раньше области

Рис. 4. Распределение вдоль оси *z* разряда тепловой мощности в единице объема, выделяемой токами электронной *Qe* и ионной *Qi* компонент плазмы для момента времени $t = 10^{-5}$ с и R = 50 кОм

времени $t = 10^{-6}$ с. Плоские участки рисунка соответствуют плотности газа ρ_0 при атмосферном давлении P = 760 Торр и температуре T = 300 К. Цифрой I на этом рисунке обозначена прикатодная область с плотностью газа ρ ниже ρ_0 . Область 2соответствует плотности ρ газа выше ρ_0 . Как видно из рис. 6, к моменту времени 10^{-6} с в области прикатодного падения потенциала I из-за разогрева плазмы до T = 400 К (рис. 5) произошло понижение плотности газа относительно ρ_0 примерно в 1.4 раза. Появившаяся из-за этого избыточная масса газа распространяется от катода к аноду в виде области 2 повышенной плотности относительно ρ_0 .

Как следует из рис. 3, после момента времени 10^{-6} с происходит незначительный рост электрического тока и уменьше-

Рис. 6. Распределение плотности ρ газа в объеме разряда для R = 50 кОм к моменту времени $t = 10^{-6}$ с

плотности тока и меньшему разогреву объема плазмы ($T_{\text{max}} = 540 \text{ K}$) в случае большего сопротивления R = 100 кOm.

ние напряжения, и к мо-

менту времени 10⁻³ с разряд

переходит в стационарный

режим. При этом происхо-

дит разогрев всего объема,

занимаемого плазмой.

На рис. 8 представлено распределение концентрации электронов n_e плазмы в объеме разряда для R = 50 и 100 кОм. Как видно из рис. 8, a, к моменту времени $4 \cdot 10^{-5}$ с для R = 50 кОм прикатодный слой распадается на две области – центральную и периферийную (цилиндрическая симметрия) – с максимальным значением плотности тока. Аналогичная ситуация возникает для R == 100 кОм – максимальная плотность тока в периферийной области, а в центральной части катодный слой распадается [19]. Без учета разогрева плазмы разряд в таком виде переходит в стацио-

положительного столба. В течение первых 10 нс прикатодная область разогревается на 100 К, не изменяя своего радиального размера. Далее, на интервале времени 10^{-8} – 10^{-7} с происходит дополнительный разогрев этой области с ее радиальным расширением в 2.5 раза с одновременным ростом электрического тока (см. рис. 3, *a*). На интервале времени 10^{-7} – 10^{-6} с рост тока замедляется, а катодная область расширяется еще в 2 раза, в то время как электрическое поле меняется незначительно. Это приводит к уменьшению плотности тока и понижению температуры на 80 К.

Быстрый разогрев плазмы возле катода приводит к изменению плотности газа. На рис. 6 показано распределение плотности ρ нейтральных атомов гелия в объеме разряда для R = 50 кОм к моменту

Рис. 5. Распределения температуры в прикатодной области разряда для R = 50 кОм для моментов времени $t = 10^{-8}$, 10^{-7} и 10^{-6} с

На рис. 7, *a*, *б* и *в* показано распределение температуры по объему разряда для моментов времени $t = 10^{-5}$ и 10^{-4} с и в стационарном состоянии для $t = 10^{-3}$ с при R = 50 кОм, на рис. 7, *e* – распределение температуры по объему разряда в стационарном состоянии для момента времени $t = 10^{-3}$ с при R = 100 кОм. Из рис. 7, *a*, *б* и *в* видно, что начиная с $t = 10^{-5}$ с температура медленно растет в области положительного столба, которая достигает в стационарном режиме величины $T_{\text{max}} = 600$ К. Как отмечалось ранее, этот процесс определяется действием электрического тока электронной компоненты плазмы. Как следует из рис. 2, для R = 100 кОм ток уменьшается в 2 раза по сравнению с R = 50 кОм, а площадь, занимаемая катодным пятном, уменьшается примерно в 1.5 раза, что приводит к снижению нарный режим, что показано в [19] для R = 100 кОм. Как видно из рис. 8, б и в, учет разогрева плазмы приводит к моменту $t = 10^{-3}$ с к однородному распределению концентрации электронов в прикатодном слое как для R = 50 кОм, так и для R = 100 кОм.

Рис. 7. Распределение температуры газа в объеме разряда для: *a*, *б* и *в* – *R* = 50 кОм и моментов времени *t* = 10^{-5} , 10^{-4} и 10^{-3} с соответственно; *г* – *R* = 100 кОм и момента времени *t* = 10^{-3} с

Рис. 8. Распределение концентрации электронов n_e плазмы в объеме разряда для: $a, \delta - R = 50$ кОм и моментов времени $t = 4 \cdot 10^{-5}$ и 10^{-3} с соответственно; e - R = 100 кОм и момента времени $t = 10^{-3}$ с

Изменение формы прикатодного слоя при учете разогрева плазмы приводит к изменению распределения потенциала между электродами вдоль оси разряда, по сравнению с распределением в холодной плазме. В [19] было представлено распределение потенциала вдоль оси рассматриваемого разряда в стационарном режиме для $\gamma = 0.4$ и R = 100 кОм без учета термодинамических процессов. На рис. 9 представлено аналогичное распределение с учетом термодинамических процессов для $\gamma = 0.4$ и R = 50 и 100 кОм.

Как видно из рис. 9, при отличии тока разряда для R = 50 и 100 кОм в 2 раза (рис. 3) распределение потенциала практически не изменяется. Для

деление потенциала практически не изменяется. Для рассмотренных случаев можно говорить, что изменение тока разряда за счет *R* приводит к перераспределению плазмы в объеме так, что *U* вдоль оси разряда остается неизменным. Сравнение кривой *U* для R = 100 кОм на рис. 9 с аналогичными данными [19] показывает, что учет разогрева плазмы приводит к изменению пространственного распределения концентрации электронов (рис. 8, *a*, *б*) в прикатодном слое и, как следствие, к незначительному изменению разности потенциалов между электродами от 270 В (см. рис. 7 в [19]) до 237 В (рис. 9).

Заключение

Рис. 9. Распределение потенциала U вдоль оси разряда для $t = 10^{-3}$ с при R = 50 и 100 кОм

В данной работе проведено численное моделирование с использованием 2d-аксиальносимметричной модели и исследование влияния термодинамических процессов на плазму тлеющего разряда в гелии атмосферного давления после искрового пробоя. Получены пространственновременные характеристики электрофизических параметров плазмы. Проведено сравнительное изучение их изменения при учете и без учета термодинамических процессов в плазме.

Показано, что учет термодинамических процессов приводит к тому, что прикатодная область разогревается значительно раньше области положительного столба за короткий промежуток времени (~ 10 нс). Более быстрый разогрев плазмы возле катода вызывает пространственное изменение плотности газа. Этот процесс носит взрывной характер.

Сравнение зависимостей тока от времени, полученных с учетом и без учета термодинамических свойств плазмы, показывает, что в первом случае ток достигает стационарного значения к моменту времен 10^{-3} с, а во втором – к 10^{-5} с, что связано с процессом разогрева плазмы. По этой же причине в первом случае величина стационарного тока незначительно больше, чем во втором.

Сравнение результатов численного эксперимента с учетом и без учета разогрева плазмы показал, что вид прикатодной области падения потенциала в стационаром режиме в этих случаях отличается. В последнем случае распределение концентрации электронов в прикатодной области в стационарном режиме разряда не является однородным, в то время как при учете термодинамических процессов пространственное распределение n_e в прикатодной области становится однородным, что приводит к уменьшению разности потенциалов между электродами.

Полученные результаты и закономерности будут использованы при моделировании кислород- и азотсодержащей плазмы данного типа разряда для определения пространственно-временной динамики ROS и RNS.

СПИСОК ЛИТЕРАТУРЫ

- 1. Laroussi M. // Plasma. 2018. V. 1. No. 1. P. 47-60.
- 2. Dubuc A., Monsarrat P., Virard F., et al. // Therapeutic Advances in Medical Oncology: Systematic Review. 2018. V. 10. P. 1-12.
- Gay-Mimbrera J., Carmen Garcı'a M., Isla-Tejera B., et al. // Adv. Therapy. 2016. -V. 33. - P. 894-909.
- Heinlin J., Isbary G., Stolz W., et al. // J. Eur. Academy of Dermatology and Venereology. 2011. - V. 25. - P. 1-11.
- 5. Dobrynin D., Wasko K., Friedman G., et al. // Plasma Medicine. 2011. V. 1. P. 241-247.
- 6. Li H.-P., Zhang X.-F., Zhu X.-M., et al. // High Volt. 2017. V. 2. No. 3. P. 188-199.
- 7. O'Connor N., Cahill O., Daniels S., et al. // J. Hospital Infection. 2014. V. 88. P. 59-65.
- 8. Chatraie M., Torkaman G., Khani M., et al. // Sci. Rep. 2018. V. 8. No. 5621. P. 1-11.
- 9. Isbary G., Shimizu T., Li Y-F., et al. // Expert Rev. Med. Devices. 2013. V. 10. No. 3. P. 367-377.
- 10. Laroussi M. // IEEE Trans. Plasma Sci. 2009. V. 37. No. 6. P. 714-725.
- 11. Yan W. and Economou D.J. // J. Phys. D: Appl. Phys. 2017. V. 50. No. 415205. P. 1-13.
- 12. Cheng H., Liu X., Lu X., et al. // High Voltage. 2016. V. 1. No. 2. P. 62-73.
- 13. Graves D.B. // Phys. Plasmas. 2014. V. 21. P. 080901.
- 14. Demkin V.P., Melnichuk S.V., Demkin O.V., et al. // Phys. Plasmas. 2016. V. 23. P. 043509.
- 15. Laroussi M., Lu X., and Keidar M. // J. Appl. Phys. 2017. V. 122. P. 020901.
- Korolev Y.D., Frants O.B., Landl N.V., et al. // IEEE Trans. Plasma Sci. 2012. V. 40. -No. 11. - P. 2837-2842.
- 17. Korolev Y.D., Frants O.B., Landl N.V., et al. // IEEE Trans. Plasma Sci. 2009. V. 37. No. 4. P. 586-592.
- 18. K o r o l e v Y . D . // Russ. J. General Chem. 2015. V. 85. No. 5. P. 1311–1325.
- 19. Demkin V.P., Melnichuk S.V., and Postnikov A.V. // Phys. Plasmas. 2018. V. 25. P. 083502.
- 20. Liu D.X., Bruggeman P., Iza F., et al. // Plasma Sources Sci. Technol. 2010. V. 19. P. 025018.
- 21. Демкин В.П., Мельничук С.В. // Изв. вузов. Физика. 2017. Т. 60. № 2. С. 123–128.

Поступила в редакцию 05.03.19, после доработки – 04.10.19.

Национальный исследовательский Томский государственный университет, г. Томск, Россия

Демкин Владимир Петрович, д.ф.-м.н., профессор каф. общей и экспериментальной физики, e-mail: demkin@ido.tsu.ru; Мельничук Сергей Васильевич, к.ф.-м.н., доцент каф. общей и экспериментальной физики, e-mail: osbereg@yandex.ru; Постников Артем Владимирович, аспирант, e-mail: postnikov a v@list.ru.