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Relevance

The peripheral vestibular system (“the balance
organs”) is located in the temporal bone. They
each consist of six semicircular canals acting as gy-
roscopes that detecting head rotations, and four
otolith organs acting as accelerometers that detect
gravity and linear head motions [1]. Information
from the vestibular system is used to maintain bal-
ance, stabilize gaze during head movements, and to
allow spatial orientation. Bilateral vestibular dys-
function (BVD) severely impairs patients” quality
of life [2]. No medical treatment to restore lost ves-
tibular function exists and physical therapy is only
mildly effective in BVD patients [3]. One of the
promising and recent solutions is an artificial bal-
ance organ: the vestibular implant (VI). The idea is
to substitute the vestibular organ by a number of
motion sensors together with an electrical stimula-
tor, which delivers information directly to the ves-
tibular afferents. The VI has 3 vestibular electrodes
which are placed in the inner space of semicircular
canal ampullas in the vicinity of vestibular afferents.
The electrodes provide the information about the
head rotations by means of biphasic electrical puls-
es [4]. The task of this study was to assess the elec-
trical parameters in the inner ear space to be used
in current propagation models.

Objective

This study was aimed to investigate the electri-
cal properties, viz. impedance, of the inner ear tis-
sues located between three semicircular canal am-
pullas and vestibular nerve (Scarpa’s ganglion) in
human samples in vitro.

Material and methods

Trained surgeons (JS and LM) performed a
mastoidoctomy on an isolated human head in or-
der to reach the bony labyrinth and the vestibular
nerve. Then three small fenestrations were made in
the semicircular canals next to the ampullae. Four
spherical electrodes made of silver with a diameter
of 0.5 mm were inserted into the ampullar cavities
(mimicking the position of VI electrodes) and

Scarpa’s ganglion. After that, each couple of elec-
trodes was used to measure the electrical imped-
ance and the phase shift using sinusoidal voltage
signals with 0.1 V amplitude in the frequency range
from 50 Hz to S kHz. A digital generator provided
sinusoidal signals, whereas the digital oscilloscope
was used to simultaneously measure the voltage V'
and the current I in the circuit. The impedance Z
was calculated as a function of frequency according
the following formula: Z ()= =

Results

The obtained volt-ampere curves (Figure)
showed a non-linear behavior over the chosen
range of measurement frequencies, which indicates
the presence of reactive component in the imped-
ance together with the active component related to
a plateau part of the graph.
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of the inner ear tissues between lateral ampulla and
Scarpa’s ganglion

Conclusion

Since biological tissues do not possess the in-
ductive properties, one can assume the reactive
part of the electrical impedance is caused by the
capacitance. It might arise due to living cell mem-
branes or to a double electrical layer occurring at
the “electrode-electrolyte” domain, since each elec-
trode is immersed in a liquid.

The obtained results are crucial for understand-
ing the processes of electrical stimulation, e.g. the
shape of a rectangular pulse can change drastically
while passing the capacitive medium. The results
will be used to develop models of electrical conduc-
tivity in the temporal bones.
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Relevance

During abrupt head rotations, the semicircular
canals in the vestibular system detect acceleration
and induce an ocular reflex that generates compen-
satory eye movements: the vestibulo-ocular reflex
(VOR). This mechanism allows the visual envi-
ronment to remain stable on the retina to preserve
visual acuity in dynamic conditions (DVA). Unfor-
tunately, the VOR is often impaired in case of bilat-
erally reduced (or absence of) vestibular function, a
condition called “bilateral vestibulopathy”. This
results in loss of DVA, and, therefore, patients fre-
quently complain of oscillopsia: the illusory
movement of the visual environment.

A new test involving fast and high-frequency
head movements was recently proposed to assess
DVA: the functional Head Impulse Test (fHIT)
(1). In this test, patients undergo abrupt head im-
pulses to the right and left and have to identify op-
totype letters (Landolt C rings) that appear briefly
during these impulses. The percentage of correctly
identified optotypes is calculated for head impulses
to each side.

At this moment, no definite therapeutic option
is yet clinically available for bilateral vestibulopa-
thy. However in the last years the feasibility of a
possible treatment has been demonstrated: the ves-
tibular implant (VI) (2). The VI attempts to re-
store head-motion sensitivity by capturing motion
and delivering it as electrical current pulses to ves-
tibular afferents via surgically implanted electrodes.

Objective

The goal of this case study was to investigate
the feasibility of restoring the high-frequency DVA
with a prototype vestibular implant, using the
fHIT.

Material and methods

A 72-years old female with bilateral vestibulo-
pathy and fitted with a modified cochlear implant
incorporating three vestibular electrodes (MED-
EL, Innsbruck, Austria), was available for this
study. Electrical stimulation was delivered with the
electrode close to the lateral ampullary nerve in the
left ear. The high-frequency DVA in the horizontal
plane was tested with the fHIT. After training, the
patient underwent six trials of the fHIT, each with a
different setting of the vestibular implant: 1) Sys-
tem OFF before stimulation; 2) System ON, base-
line stimulation; 3) System ON, reversed stimula-
tion; 4) System ON, positive stimulation; S) Sys-
tem OFF, without delay after stimulation offset 4;
6) System OFF, 25 minutes delay after stimulation
offset. The fHIT scores for right and left head im-
pulses were compared between trials using Logistic
regression.

Results

Vestibular implant stimulation improved the
high-frequency DVA compared to no stimulation
(see Table). This improvement was significant for
“System ON, baseline stimulation” (p = 0.02) and
“System ON, positive stimulation” (p < 0.001).
fHIT scores changed from 19-44% {Jno stimula-
tion) to maximum 75-94% (System ON, positive
stimulation).

Percentage and absolute number of correctl
determined Landolt C-optotypes in left- an
rightward directed impulses during different test
conditions. *=Significant improvement compared
to condition Systemos

Side Left (Implanted) Right

Condition  [% Correct answers,|% Correct answers
(absolute number)|(absolute number

System,g 19 (3/16) 19 (3/16)

System,, aeline’ 50 (8/16) 56 (9/16)

System,,™ e~ 38 (6/16) 25 (4/16)

System, "™ 94 (15/16) 75 (12/16)

System o"™" 44 (7/16) 38(6/16)

System, g™ 38(6/16) 19(3/16)
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